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Abstract 

A model for the propagation of a finite concentration zone in a chroma- 
tographic column is discussed for the case of a single component sample. This 
model is based on the modern theory of nonlinear hyperbolic systems of partial 
differential equations. It accounts for the nonlinear effects due 1) to the 
thermodynamics of solute-stationary phase equilibrium (i.e., the nonlinearity of 
the equilibrium isotherm), 2 )  to the interaction between radial mass transfer and 
flow velocity (the sorption effect in gas chromatography). and 3) to the pressure 
gradient along the column (in gas chromatography). Numerical results are 
obtained by using the Godunov method. The column is divided into a large 
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1794 ROUCHON ET AL. 

number of short segments. At each corresponding point a sequence of Riemann 
problems (a concentration step at each time interval) is solved. The stability of 
this procedure depends strongly on the ratio dzldr of the elementary column 
segment length to the time interval. The main advantage of this method over 
previous ones is that it is not necessary to locate the concentration discontinuitirs 
for separate computation of their migration. The excellent results of a comparison 
between the experimental profiles obtained for the elution of large concentration 
zones of n-hexane on graphitized carbon black and the profiles calculated by this 
method from the isotherm of n-hexane determined separately, illustrate the 
validity of the method and  its accuracy. 

INTRODUCTION 

The theory of the migration of zones in analytical chromatography 
usually assumes that the concentration of the solute in the mobile phase 
is negligibly small. This has several major consequences: the flow rate is 
not perturbed by the presence of the solute, the kinetics of mass transfer is 
independent of the solute concentration, elution is an isothermal process 
and, most importantly, the constant of the physicochemical equilibrium 
of the solute between the mobile and the stationary phases is inde- 
pendent of the concentration of the solute in the mobile phase. Those are 
the basic assumptions of linear chromatography. From there it is easy to 
show that the band profile is Gaussian, provided 1) that the kinetics of 
mass transfer between the two phases is rapid compared to the migration 
of the zone, 2) that there is no significant amount of high energy sites on 
the surface of the adsorbent or support, and 3 )  that the sample injection 
band is pluglike or at least very narrow compared to the standard 
deviation of the elution band (1). The validity of this conclusion in the 
general case of analytical chromatography is well supported by experi- 
mental results. A Gaussian curve is a good approximation for most band 
profiles recorded in analytical chromatography, even though in almost 
all cases the actual profile deviates somewhat from a Gaussian profile 
due to the serious experimental difficulties encountered when trying to 
satisfy exactly the three conditions just listed. 

When the concentration of the solute increases, however, it is 
commonly observed that the band profile changes progressively. The 
peak broadens and becomes more and more unsymmetrical, the 
retention time of the peak maximum varies, and the need for a more 
sophisticated theoretical treatment of the band profile arises. The reason 
of this phenomenon is related to the fact that the concentration of solute 
in the mobile phase cannot be considered as negligibly small any more. 
This has several major consequences, the relative importance of which 
depends on the mode of chromatography used and on the experimental 
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NUMERICAL SIMULATION OF BAND PROPAGATION 1795 

conditions, since the finite concentration of the solute can influence the 
band profile through different pathways (2,3). The most important ones 
are the deviation of the equilibrium isotherm from a linear behavior, the 
difference between the partial molar volumes of the solute in the mobile 
and stationary phases, the variation of the viscosity of the mobile phase 
with its composition, the heat absorbed or generated when the solute goes 
from one phase to the other, and the change in the mass transfer kinetics 
associated with the variation of concentration during the passage of the 
zone. 

The most important of these phenomena is that, when the sample size 
is increased and the concentration of the solute in the migrating band 
becomes large, the equilibrium constant of the solute between the 
stationary phase and the mobile phase does not remain constant, and the 
assumption of linear chromatography, i.e., of a linear isotherm, breaks 
down. 

The plot of the concentration of the solute in the stationary phase at 
equilibrium versus its concentration in the mobile phase, i.e., the 
equilibrium isotherm, may have one of different shapes. In gas chroma- 
tography the solubility of the solute in the liquid phase or the amount of 
the compound under study adsorbed on the surface of the adsorbent 
most often increases faster than the partial pressure of the solute in the 
mobile phase and tends toward infinity when this partial pressure 
approaches the vapor pressure at the column temperature (2). Then the 
retention of the compound considered increases with increasing con- 
centration: the retention time of most compounds which have a large 
column capacity factor (k’ > -2-3) increases with increasing sample 
size. Other isotherms are possible, of course, including a Langmuir-type 
isotherm at low concentration followed by capillary condensation in the 
pore of the adsorbent or  support (2). Sometimes the solute-solvent 
miscibility is not complete over some range of mixture composition. 
Then two phases coexist in that range, and chromatography just does not 
work in the corresponding conditions. 

In liquid chromatography, on the other hand, a Langmuir isotherm, or 
a n  isotherm having a similar shape, is very frequent (4) .  In  such a case the 
amount of solute in the stationary phase at equilibrium increases more 
slowly than the concentration in the mobile phase, and the retention time 
decreases steadily with increasing sample size. There are examples of the 
opposite behavior, however. For a number of compounds the amount 
sorbed on the surface of the stationary phase increases with increasing 
concentration in the mobile solvent at very low concentrations, then 
decreases at larger concentrations, and the isotherm experiences an 
inflection point for some intermediate value of the concentration (5).  The 
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1796 ROUCHON ET AL. 

retention time of such a compound would increase with increasing 
sample size at low values of the sample size, then go through a minimum 
and decrease. 

At the same time that the retention time varies, the band profile 
becomes more and more unsymmetrical, the tail becoming steeper and 
steeper if the retention time increases with increasing sample size; the 
front becoming steeper and steeper in the opposite case. Large concentra- 
tion band profiles become complex in the case of isotherms with an 
inflection point. 

Another source of nonlinear behavior of the chromatographic phe- 
nomenon and of changes in the band profile is related to the difference in 
the partial molar volumes of the solute in the mobile and the stationary 
phases, which gives rise to the so-called sorption effect (6) ,  of major 
importance in gas chromatography, but often close to being insignificant 
in liquid chromatography. Since in chromatography the flow rate of the 
mobile phase (pure solvent) at the column inlet is kept constant, the 
presence of the solute at finite concentration perturbs the flow rate of the 
mobile phase (solvent + dissolved solute) inside the migrating band. In 
gas chromatography this effect can become very large if the vapor 
pressure of the solute is important, since the molar volume of a vapor is 
several hundred times larger than that of the liquid. Then the flow 
velocity of the gas phase is much larger inside the band than upstream or 
downstream, and it increases with increasing solute concentration. 

In gas chromatography the sorption effect tends to act in an opposite 
way to the isotherm effect just described. It gives rise to peaks which have 
a very sharp front and a quasi-Gaussian tail, as are often seen for 
compounds with very small retention on open tubular columns (k’ < 0.5- 
1) (7). For compounds with intermediate retention (k’ between -0.5 and 
lS),  it is even possible in certain cases to achieve an almost complete 
compensation of one effect by the other (8). This can be done exactly by 
adjusting the column average pressure, which determines the extent of 
the sorption effect but does not influence the isotherm effect (7). In 
liquid-solid chromatography the solute displaces the solvent from the 
surface of the stationary phase, the solute molecules replacing the solvent 
molecules, and the difference in volume occupied by the solute and by 
the displaced solvent is very small, so this effect is rarely significant 

Other effects are of lesser importance and are often neglected. The 
variation of the viscosity of the mobile phase with its composition may 
affect the flow velocity. As long as the composition of the mobile phase is 
radially homogeneous, it causes but little change in the band profile. In 
liquid chromatography, however, if the solution of solute becomes much 

(4). 
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NUMERICAL SIMULATION OF BAND PROPAGATION 1797 

more viscous than the solvent, hydrodynamic instabilities may arise, 
resulting in “fingering flow” and a dramatic loss of performance. Because 
of the compressibility of the mobile phase in gas chromatography, the 
effect of viscosity could be more serious than in liquid chromatography. 
But organic vapors, even those of compounds with large molecular 
weights, usually have a small viscosity. If hydrogen or  even nitrogen is 
used as the carrier gas, the change in the viscosity of the gas with 
composition is small and the effect on the band profile is very small and 
most probably negligible (2). 

Another effect of possible importance is the thermal effect. When a 
solute is sorbed by the stationary phase, i.e., on the band front, some heat 
is usually generated; this heat is absorbed when the solute returns to the 
mobile phase, i.e., on the band tail. The band front is in a warm zone and 
tends to move faster than the center of the band, while the band tail, 
which is in a cold area, tends to move more slowly. The thermal effect 
usually tends to broaden the band, at least in gas chromatography. In 
liquid chromatography it would be conceivable to observe a reversed 
thermal effect if  the passage of the solute from the mobile phase to the 
stationary phase is an endothermal process. Such a phenomenon has 
never been reported. This effect should be more important in wide 
preparative columns, which operate almost adiabatically, than in narrow 
analytical ones, which operate isothermally. In practice, this effect is 
neglected; there are no experimental data available to suggest that it is a 
wrong assumption. It is worth noting, however, that the enthalpy of 
adsorption in reversed phase liquid chromatography can be very 
significant, especially for heavy molecular weight solutes such as 
triglycerides and peptides, and this observation warrants a more thor- 
ough investigation. 

All these phenomena are known, and most of them have been 
investigated in some detail. There is no general theory, however, which 
takes all of the effects of finite concentration into account at the same 
time. This is probably too difficult to do at present (9). A model is not yet 
available for the prediction of the elution band profile in the case of a 
large amount of a single compound when the equilibrium isotherm is 
known. Further advances in preparative chromatography require the 
development of such models taking into account, minimally, the effects 
of the equilibrium isotherm and of the sorption phenomenon. The aim of 
this paper is the presentation of such a model and a discussion of its 
numerical solution in the simple case of the elution of a single 
component band in gas chromatography. 

The exact prediction of the band profile requires the solution of a 
system of partial differential equations which are derived by writing the 
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1798 ROUCHON ET AL. 

mass balance for the mobile phase and for the solute(s). This system of 
equations is impossible to solve analytically in the general case and is 
difficult to study (10). An analytical solution is possible only in the case of 
a linear isotherm, in which case a Gaussian profile is obtained. 

A considerable simplification is brought to the problem if we assume 
that the kinetics of radial mass transfer is infinitely fast while axial 
diffusion is negligible, i.e., that the column efficiency is infinite. This 
leads to the model of ideal, nonlinear chromatography. Its properties 
have been discussed by several authors, notably Jacob (10-12), Rhee (13, 
14), and Aris and Amundson (15). Jacob used the method of character- 
istics to derive a number of important qualitative results regarding the 
change in the band profile during elution (16,17). A program using this 
approach has been written and used (22). The method, however, is of 
limited application and very complex. It is possible to show that in 
certain conditions the system can propagate concentration discontinui- 
ties. The program must locate these discontinuities exactly during each 
loop, as the migration rates of the continuous part of the profile and of 
the discontinuity do not follow the same equations. Because of the errors 
introduced, almost half the band area is lost during the calculation, 
which leaves some doubt regarding the validity of the results. 

Rhee derived the solution of the Riemann problem (i.e., frontal 
analysis response) in the case of a Langmuir isotherm (24). In spite of the 
generality of this type of isotherm in chromatographic systems, there are 
a number of cases where the method is not applicable, most notably the 
case of a rectangular injection. Aris and Amundson (15) described in 
great detail the method of characteristics for the solution of this type of 
systems of partial differential equations, and gave a number of applica- 
tions in chromatography. 

We discuss here the theoretical background of a numerical solution of 
the system of partial differential equations which describes the migration 
of a single component band (18). This work is based on recent 
developments made in the study of nonlinear hyperbolic systems of 
partial differential equations and especially on the work of Godunov (19). 
Since we must write separately the mass balance of each compound in 
the chemical system, the system of partial differential equations corre- 
sponding to the separation of a mixture contains one equation for each 
component of the mixture and one for the solvent. Then the present 
approach is not directly applicable, but the very simple algorithm 
obtained for the calculation of the profiles solution of the system of two 
partial differential equations in the case of a single compound can most 
probably be extended to the solution of a system of three partial 
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NUMERICAL SIMULATION OF BAND PROPAGATION 1799 

differential equations, in the case of a two-component mixture, as 
suggested by results obtained in another area by Kvaalen et al. (20). 

On the other hand, this numerical solution has the advantage of 
approaching the physical solution satisfactorily. The concentration 
discontinuities appear, build up, and/or disappear in a natural way. I t  is 
not necessary to carry out a special calculation to locate them. Further- 
more, this solution gives the elution profile corresponding to any 
injection profile. In this way it is more general than the solution of the 
Riemann problem, since it can predict the profile of a zone of any finite 
width and profile at injection. It must also be emphasized that the 
method is applicable to any isotherm defined through an equation or a 
table. 

The flow velocity varies during the elution of a band, especially in gas 
chromatography. The general algorithm can be adapted to take that effect 
into account and to calculate the flow velocity profile which accompanies 
the elution of a large concentration band. 

Finally, the method is applied to the calculation of the elution profiles 
of n-hexane on graphitized carbon black, a system which corresponds to 
an isotherm with an inflection tangent (21). The results of the prediction 
are compared to some experimental data. 

1. THE CHROMATOGRAPHIC MODEL 

We use the model described and discussed by Valentin which accounts 
for the migration and transformation of the large concentration band of a 
single, pure compound along a chromatographic column (2, 22). The 
main assumptions of this model are the following: 

(1) The column is supposed to be radially homogeneous, and so is the 
input profile. Therefore the problem is monodimensional. The 
only variables are the abscissa along the column and the time. 

(2) Gases follow ideal gas laws for compressibility and mixing. 
(3) Liquids are not compressible. 
(4) Darcy’s law is valid in the range of flow velocity investigated. The 

column permeability is constant, independent of the abscissa. 
( 5 )  The local pressure is constant during an experiment, i.e., depends 

on the abscisa, not on the time, even during the passage of a large 
concentration band. 

(6) The carrier gas is not sorbed by the stationary phase (in gas 
chromatography). 
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1800 ROUCHON ET AL. 

(7) Temperature is constant during an experiment, independent of the 
position or the time. 

(8) Mass and heat energy exchanges between the mobile and the 
stationary phases are infinitely fast. The two phases are constantly 
at thermal and composition equilibrium. 

(9) Axial diffusion proceeds at a negligible speed. 

Combination of Assumptions 8 and 9 results in an infinite efficiency of 
the column. In this model, band broadening results only from the 
combination of the nonlinear effects taking place during the elution, 
which are the phenomenon studied here, and of rounding errors arising 
from the large number of numerical operations which have to be carried 
out. As discussed later, these errors may be used to simulate the effect of 
finite column efficiency. 

The mass balance for a Compound A in the column may be written: 

(UNtf) - ( ~ h +  N?) = - - d d 
dt dz 

where the subscripts S and A4 stand for stationary and mobile phase, 
respectively; the variables are the time t and the abscissa along the 
column z; and N$ are the number of moles of Compound A per unit 
length of column (concentration in a monodimensional model) in the 
mobile phase and in the stationary phase at equilibrium, respectively; 
and u is the local velocity of the mobile phase. 

The unknowns are the local mobile phase velocity u and the values of 
Ntf and N$ for each Compound A. Ntf and N$ are not independent; they 
are related by the equilibrium isotherm. 

Equation (1) is valid for the solutes as well as for the mobile phase. 
In the case where there are a number n of solutes in the original 

sample, they compete for access to the stationary phase and the 
composition of the sorbed material is given by a set of equations usually 
referred to as “the mixed isotherm:” 

N ;  = k’(N;, N;, N;, . . . , Wh, . . . , N L )  ( 2 )  

where i (between 1 and n) stands for the ith component of the mixture, 
and k’ is a function of the composition of the mobile phase. 

For gas chromatography the carrier gas is not sorbed by the mobile 
phase (Assumption 6), and the last equation, which expresses the 
equilibrium of the mobile phase, is 
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NUMERICAL SIMULATION OF BAND PROPAGATION 1801 

In liquid chromatography the mobile phase is sorbed by the stationary 
phase, and an equation similar to Eq. (2) applies for the mobile phase. 

II. APPLICATION TO GAS CHROMATOGRAPHY 

The mole fraction of each compound is related to the local pressure 
and to the number of moles per unit column length by the following 
equation (Assumption 2): 

where h is a proportionality coefficient which depends on the column 
characteristics and its temperature, but which will otherwise be constant 
and is the same for all compounds. Combination of Eqs. ( I ) ,  (2), and (4) 
gives 

d d 
dz dt 
- (upx i )  + ~ [ p X ,  + k'(pX1, px,, . . . , pX,)] = 0 

There are n equations similar to Eq. (5) ,  one for each compound in the 
original sample. In addition, there is a similar equation for the carrier 
gas: 

It is more practical, however, to use instead of Eq. (6) the sum of all 
Eqs. ( 5 )  (i.e., for each of the n compounds) and of Eq. (6). This is the total 
mass balance equation of the column: 

In Eq. (7) the product up is proportional to the molar flow rate of the 
mobile phase through the column. 

The local pressure is derived from Darcy's law, assuming that the local 
velocity remains constant during the elution of a compound. Then the 
pressure profile is given by the conventional equation (23) 
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1802 ROUCHON ET AL. 

p ( z )  = p 5  
where P is the inlet 
absolute value of the 

to outlet pressure ratio, in practice equal to the 
inlet pressure, and L is the column length. 

As a consequence of Assumption 5, that the partial differential of the 
local pressure by respect to time is zero, we can rewrite the above 
equations and obtain the final system of partial differential equations: 

d d 
dt  

~ ( F X , )  + - [pX ,  + kf (pX, ,pX2 ,  . . . , p X J ]  = 0 (9) 

The unknowns in Eqs. (9)-(10) are the total flow rate F and the flow 
rates of each of the compounds, F,. 

111. MATHEMATICAL PROPERTIES OF THE SYSTEM 
OF EQUATIONS 

The equations leading to the System I of partial differential equations 
(Eqs. 9 and 10) have been derived with the assumption that all functions 
(i.e., the N,’s, xi’s, F,’s) can be differentiated as often as necessary. It can be 
shown, however, that the concept of solution of such a system can be 
extended to discontinuous functions (cf. Section VI, the Appendix, and 
Ref. 24). Then System I of Eqs. (9)-( 10) also contains implicitly the usual 
equations written for the propagation of discontinuities (10, 11). This is 
due to the conservative properties of this system of equations. 

The system of partial differential Eqs. (9)-(10) is a hyperbolic system of 
nonlinear equations. It is not written in the classical way used by 
mathematicians, however. The variables z and t have been exchanged. To 
chemists this may seem of little importance, but this exchange creates 
some uncomfortable, awkward, and sometimes difficult situations when 
the classical theories of partial differential equations are applied to our 
system (15). The physical significance of the functions involved is 
changed, often reversed. The designation of symbols is ambiguous: the 
classical theory of nonlinear hyperbolic systems has been derived mostly 
for the solution of hydrodynamic problems. The longitudinal gradient of 
flux becomes a time gradient of accumulation (the increase of the 
amount of solute contained in a column section). Worse, the velocity of 
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NUMERICAL SIMULATION OF BAND PROPAGATION 1803 

the classical theory (dzldt) becomes here the reverse of velocity (drldz). We 
call it the retention ratio (in slcm). 

An important consequence of this nonclassical character of the 
chromatographic system of partial differential equations is that the most 
appropriate vectorial space for a discussion of the properties of the 
solution of the system is a (n  + 1) dimensionalflaw rate space (where the 
coordinates of the vectors are the flow rates of each component of the 
studied mixture and the total flow rate) and not the corresponding 
amount space (where the vector coordinates are the amount of each 
chemical species involved) or  concentration space. Physically, this means 
that if the amount of each component is known at each location, there is 
still one degree of indetermination, the mobile phase flow velocity. If the 
flow rates of each component and the total flow rate are known, the 
system is entirely determined, including the local composition (22). 

IV. THE BOUNDARY CONDITIONS 

We know the initial conditions of the system, i.e., the value of the 
unknowns at the time origin, and the amounts injected, i.e., the value of 
the unknowns at the column inlet. In other words, because the unknowns 
are the flow rates, FX,(z,t), we know all the FXj(z,O) (usually 0, except for 
the mobile phase) and the F'(0,r) (usually 0 for the solutes and FT for the 
carrier gas, except during injection). 

These are not the conventional boundary conditions of a system of 
partial differential equations (cf. Fig. I). This is related to the fact that 
only the upper right quadrant of the (z,t) plane has a physical meaning in 
the case of the chromatographic problem. It is possible, however, to 
transform the problem into a standard Cauchy problem, because all the 
eigenvalues ofthe system are positive (cf. Section VI). Information transfer 
in a chromatographic column flows exclusively toward increasing time. 

V. THE SORPTION EFFECT 

In gas chromatography it is not possible to consider the local gas 
velocity as time-independent during the passage of a migrating zone. The 
gas velocity depends on the composition of the gas phase, which itself 
depends on the mass transfers between mobile and stationary phases. 
First pointed out by Bosanquet and Morgan (25), this effect has been 
thoroughly discussed by Golay (26), Peterson and Helfferich (27) 
Haarhof and Van der Linde (28), and Jacob and Guiochon (3,10). 
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X,? 

................................... 

L 

x, ? 

t 

a I U ?  

1 xl? 

I 

b 

U ?  U ?  

FIG. 1. Boundary conditions of the chromatography problem (a) and the classical Cauchy 
problem (b). For the chromatographic problem only r > 0 matters, and we know the 
conditions at z = 0 (injection profile uo(r)) and at r = 0 (the column is empty, Fi = 0 except 

for the mobile phase). 

The mass flow rate of carrier gas sent to the column is kept constant by 
the flow rate controller. The addition of solute vapor to the gas phase 
increases the local velocity. The passage of this vapor to the stationary 
phase is tantamount to its disappearance, from a volumetric point of 
view, since the density of the liquid, whether pure, sorbed on the surface 
of an adsorbent, or dissolved in the stationary solvent, is about 200 times 
larger than the density of the vapor. 

As a consequence, when dealing with gas chromatographic problems, 
we may not simplify System I by assuming the flow rate to be constant 
and by taking F off the differential operator. In liquid chromatography, 
the solute displaces the solvent when it is sorbed. Neglecting the sorption 
effect will have no significant effect on the accuracy of the predictions in 
most cases unless there is a significant difference between the volume 
occupied by the sorbed solute and the corresponding volume of displaced 
solvent. 

VI. NONLINEAR HYPERBOLIC SYSTEMS 

Let w be the vector of coordinates (FX,, FX,, . . . , FX;, . . . , FX,) in the n- 
dimensional space. The system of equations becomes 

dw dw dw + ~ d [H(w)] = - + Dfl(w) - = 0 
dz dt dz dt 
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with 

H(w) = px; + k ' @ X , ,  px,, . . . , p x , ,  . . . , p X n )  
. . .  

1805 

D a ( w )  stands for the matrice obtained by differentiation of the matrice 
H(w) in respect to each of the coordinates of w. 

A system of partial differential equations such as the one studied here 
is called hyperbolic if the eigenvalues of the matrice D,,H(w) are real for 
any vector w. If these eigenvalues are real and all different, the system is 
called strictly hyperbolic. 

For example, in the case of a single solute, the system of partial 
differential equations becomes 

The eigenvalues of DS(w)  are 0 and 11 + (1 - X)k']/u, and the system 
is strictly hyperbolic. 

As a consequence of this property, it has been shown that the 
information propagates at a finite velocity, i.e., in the case of the 
chromatographic system at a finite value of the retention ratio (see 
Section 111). If the initial condition, i.e., F(O,t), is zero for all values of time 
outside a finite interval (which corresponds to the injection of a finite 
sample plug), the same property is true for the function F(z,t) for any 
other value of z (see Fig. 2). A sample plug will propagate along the 
column and elute within a finite time, leaving the column in the same 
condition as it was before the injection. This property should be expected 
from a satisfactory model of chromatography. 
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FIG. 2. Propagation of a solution, i.e.. a band profile, along the column. The boundary 
condition is zero except in a limited time interval at the column inlet ( z  = 0). The solution is 
zero, except on a limited time interval at any position along the column. Hence, the 
migration of the zone takes a finite time, at least within thc framework of the ideal model. 
Diffusion will smooth the profile and give it a quasi-Gaussian tail. The solution is zero in 
all the hatched areas. The boundary condition in zero on the hatched part of the time 

axis. 

Except for the theory of characteristics ( la) ,  directly derived from the 
case of linear hyperbolic systems, the theory of nonlinear hyperbolic 
systems of partial differential equations is in most part very recent and 
still very incomplete (29,30). There is no general result on the existence of 
solutions nor, of course, any general result on the convergence of 
algorithms permitting the calculation of approximate solutions. This is 
related to the unfortunate property of these systems that they do not 
necessarily have a regular solution, even for very regular initial functions. 
Singularities may appear for any positive value of z ,  depending on the 
initial function (boundary condition). 

It is about as difficult to understand the physical significance of the 
appearance of singularities in the solution of the system as it is to account 
for this phenomenon (2). A more detailed discussion, leading to the 
concept of weak solution and of mathematical entropy, can be found in 
Ref. 24. Some explanations are also presented in the Appendix. 

VII. METHODS OF NUMERICAL SOLUTIONS 

The methods based on the utilization of characteristics which are 
usually simple and accurate become impractical as soon as a discontinu- 
ity arises, which is the normal case in ideal nonlinear chromatography. 
Thus, we shall apply methods using a finite differential approach. 

The general principle of these methods consists of a discretization of 
the plane z > 0, ie., a space increment, 6z, and a time increment, 6t, are 
chosen and a network of points with coordinates i6t and k6z is created 
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(Fig. 3) .  A recurrence process permits the calculation of an approximate 
value of the solution at the points on z = n6z from the points on the 
previous line (z = (n  - 1)6z). The solution will be assumed to be constant 
on the time interval I i6t - (i + 1)6t I .  Let u(n,i) be the value of the function 
calculated for the step n6z and the interval li6t - (i 

The calculation begins by the discretization (cf. 
condition uo; for example. by writing 

t I)& 1 .  
Fig. 4) of the initial 

There exist a number of different method5 to write the iteration 
process. The Lax-Friedrich relationship wa5 the fir\ t  to be suggested for 
the numerical solution of nonlinear hyperbolic \y\tems (29): 

The advantage of this method is that it does favor one direction of 
propagation, in agreement with our understanding of the physical 
problem. 

A. Condition of Stability 

Consideration of the “propagation velocity” (i.e., the retention ratio) 
gives a necessary condition for the stability of the calculation. As noted 

L 

t 

I 
I 
I 
I 
I 
I 
I - t  

AZ 

0 At iAt  

FIG. 3. Networking of the r,z planc for the calculation of the solutions of the system of 
partial differential equations. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
0
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1808 ROUCHON ET AL. 

1 1 1  
1 1 1  
I l l  

,t 
i (i+l) i+2 (DCAt) 

FIG. 4. Discretization of the boundary condition, Le., the injection profile. The figure shows 
how Eq. (15) is used to calculate Fo,, i.e., to discretize the mass flow rate of Compound i at 

the column inlet. 

above, a characteristic of nonlinear, hyperbolic systems of partial 
differential equations is the existence of a finite retention ratio. If Uo, the 
initial function (injection band profile), is zero everywhere outside a 
certain time interval I a-b I (which is, of course, the proper way to carry out 
an injection in chromatography), the entropic solution (24) at the point of 
abscissa z differs from zero only in the time interval I(a - Mz) - 
(b + Mz) 1 ,  with M given by the relationship: 

M = Su Max I &(u) I (17) 
uE! k E [ l . n ]  

Furthermore, the numerical value of the retention ratio corresponding 
to the single step process described above (cf. Eq. 16) is 6t/6z. There will 
be a loss of information if this numerical value of the retention ratio is 
smaller than the actual retention ratio of the initial condition (cf. Fig. 5).The 
calculated solution will be zero inside the hatchedarea, whereas it should be 
different from zero. To avoid this difficulty, the following condition, called 
the Courant-Friedrichs-Lewy condition (CFL), must be fulfilled (31): 

For example, for the simplest case of a nonlinear hyperbolic equation 
(24): 
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the condition becomes: 

B. The Godunov Method 

1809 

We shall make use here of the Godunov method (19) which derives 
from the following observation: at the point n6z of the network (cf. Fig. 6 
and Section VII), we have an approximate solution made of a number of 
constant segments and separated by steps. We know how to derive an 
approximate solution of the Riemann problem of the system of Eqs. (1 1)- 
(13), i.e., to solve this system for the following initial function: 

u y t )  = u-  

uo(r) = U +  

l < 0 

t > 0 

Thus we solve a series of local Riemann problems for the System I 
(Eqs. 9 and 10 or 11 to 13) at the points n6z and we combine these 
solutions to obtain an approximate solution at point (n + 1)6z. At each 
point (iSr, n6z) the Riemann problem is solved; let be the solution on 
the vertical line AB (cf. Fig. 7).Because of the homogeneity of both Eq. 
(1 1) and the initial condition, the solution of the Riemann problem is 
constant on any straight line going through the point at which the initial 
function is discontinuous. 

Z 

t 
FIG. 5. Condition of stability of the numerical method. The numerical solution is zero in 
the two hatched area. However, the actual solution of the problem is not zero in the 

vertically hatched areas. 
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wn+l L l  f 't: w?+l 
1-1 I 

(n+l)az F B C 
n 
I - 1/2 W. Wfl ' + '/2 

naz E A D 
(i -1)U ibt (i + 1 ) A t  

FIG. 6. Godunov procedure for the calculation of a solution of the system of partial 
differential equations by solving a series of Ricmann problems for every value of i. See 

explanations in text. 

Z 
4 / 

FIG. 7. Derivation of the Courant-Friedrichs-Ley condition. 

Integration of Eq. (1 1) on (ABCD) gives 

d w  d /IABcD dz dt 
__ + -H(w) = 0 

or 

This, however, assumes that the value of I+('+,/~ is not perturbed by the 
neighbor Riemann problems. The solution of the Riemann problem is 
constant under the straight lines which have a slope hl for x < 0 and A,, 
for x > 0. Accordingly, if 6z is small enough and the straight lines going 
through the point )i6t,n6z) with slopes A,(W.('+l) and h , , ( ~ )  do not cut the 
vertical segments EF and DC, respectively, the Eq. (23) is valid. This may 
be written as follows: 
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NUMERICAL SIMULATION OF BAND PROPAGATION 1811 

These two conditions are verified if the CFL condition is satisfied. 

C. Convergence of the Godunov Method 

There are few general results available regarding the existence of a 
solution and the convergence of the approach described here. In the case 
of the simple Eq. (19), it has been shown that there is one single solution 
and that the method converges toward it (19, 32, 33). Results regarding 
more complex functions are still incomplete. Lax and Wendroff (34) have 
shown that if a conservative algorithm converges, it tends toward a weak 
solution of System (1 1) (25). Furthermore, if a discrete entropy relation- 
ship is valid at each step of the calculation ( 3 4 ,  the limit function is an 
entropic solution of the system (25). 

Finally, in the case of the Godunov method, the discrete entropy 
condition (24) is always verified; if the method converges, it is toward an 
(the?) entropic solution. This does not prove, however, either the existence 
of that solution or the convergence of the series of solutions calculated by 
this method. 

The main drawback of methods like the present one is that they are of 
the first order, i.e., that the error made at each passage from n6z to 
(n  + 1)6z is of the same order as 6z (35). Thus, these methods will tend to 
dampen discontinuities. There are methods of the second order used for 
the solution of linear, hyperbolic problems. Unfortunately, they give rise 
to strong oscillations in the neighborhood of discontinuities. One 
possible refinement to the numerical solution of the chromatographic 
problem would be the use of a method which would be second order 
almost everywhere, except close to discontinuities, where it would be first 
order (32). 

D. Antidiffuse Method 

The general principle of this method is to start from a good first-order 
method and to modify it in the regions where the solution is regular, i.e., 
far from discontinuities, to obtain a more accurate, second-order 
method. 

The first-order method will be Godunov's method, as described in the 
previous sections and in Eq. (24). The second-order method used was a 
Lax-Wendroff method, using a two-term expansion of w?''), assumed to 
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1812 ROUCHON ET AL. 

be a regular function of wl/. The quasi-second-order method is obtained 
by testing for each value of i whether a concentration discontinuity is 
near; for example, by checking whether the solution calculated at point n 
tends to oscillate. If it does, the Lax-Wendroff method is used instead of 
the Godunov one. It has been shown (32) that this type of method 
converges toward the entropic solution in the case of the simplest 
hyperbolic equation (Eq. 19). In this case, however, the condition of 
stability is twice as stringent as the Courant-Friedrich-Lewy condition 
written above for the Godunov method. 

Since the antediffuse method did not give any improvement over the 
simpler Godunov method, we do not give any detail on its application 
here. They can be found elsewhere (28). 

VIII. THE CHROMATOGRAPHIC SYSTEM FOR THE ONE 
COMPONENT SAMPLE 

The system of partial differential equations describing the elution of a 
large concentration band of a pure compound in gas chromatography is 
given by Eq. (14). The local flow rate of mobile phase, F, is proportional 
to the product pu. Accordingly, the differential matrice associated with 
H(w) is 

P PX 
F F 

PX 
F F 

- ( 1  + k ’ ( P X ) )  - _- (1 + k‘ (PX) )  

- k ‘ ( P X )  
( 2 5 )  DdH) = 

- - -k ’ (PX)  

The eigenvalues of this matrice are: 

1 + (1  - X)k’(PX) 
h2 = 

M 
(27) 

The system is strictly hyperbolic, and the associated eigenvectors are 

The results of the study of the second vector field depend on the nature 
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NUMERICAL SIMULATION OF BAND PROPAGATION 1813 

and shape of the isotherm. This study requires an estimate of the 
expression Dwbwz (39, which is equal to 

Dwh2w2 = ( P / F 2 ) [ 1  + ( 1  - Q k ’ ]  [P(1 - Qk” - 2k’ ]  (29) 

A detailed study of the Riemann problem requires the determination of 
the roots of the term [P( 1 - X)k’ - 2k’l. The design of the Godunov 
method, however, can be simply made from the following observations. 

A. The Riemann Problem 

The situation is described in Fig. 8. The value of the solution is: 

w- in Area 1 of Fig. 8 

w ‘ in Area 2 of Fig. 8 

w +  in Area 4 of Fig. 8 

In Area 3 there is a succession of simple two-waves, either discon- 
tinuities or expansion waves, i.e., parts of solurions which are regular with 
respect to the variable t l z  (cf. Section 111, above). w1 is determined as 
follows: w’ is on the same first class integral curve as w-, and it is possible 
to go from w1 to w+ along one (or several, depending on the sign of 
[P( 1 - x)k” - 2k’l) acceptable two-wave(s). This solution does exist if w- 
and w+ are close and if (P(1 - X)k” - 2k’] is not zero close to w- or w+. 

The critical point, however, is that in all cases this value w1 is constant 
on the vertical line k = 0 and satisfies the Rankine-Hugoniot relationship 

FIG. 8. Solution of the Riemann problem and construction of the Godunov algorithm. 
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[H(w') - H(w-)] = O[wl - w-] (30) 

H(w') = H(w-) 

The first class integra- curves are characterize( by X = Cte. Finally, 
although we do not know w' exactly, we do know H(w'), which is the only 
function through which w' is used in the Godunov method. 

B. Condition of Stability 

The CFL condition is especially simple to write, and also to fulfill, in 
this case, since one of the eigenvalues is zero. It comes: 

s z  
- sup A*(w) < 1 
6t w E R 2  

or, after taking the largest possible values for each of the terms 
involved, 

where urnin is the smallest possible flow velocity during the experiment, 
i.e., the migration velocity of an unretained compound (column length 
divided by the time hold-up and corrected for the decompression effect, 
Ref. 23), and kkax is the maximum slope of the isotherm. This takes into 
account the variation of the mobile phase velocity during the passage of 
the band (cf. the sorption effect, Section V). 

C. Boundary Conditions 

We now transform the chromatographic system into one which has 
standard boundary conditions. 

Since the system of partial differential equations is hyperbolic, the 
propagation of the bands takes place at finite retention ratio, i.e., there is 
a finite value of time T such that the output of the column at time t + T 
does not depend on the initial state of the system at any time prior to t (cf. 
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Section 111). Thus, it is possible to study the behavior of the system by 
assuming a constant initial condition. 

The eigenvalues of the matrice D,Ji(w) being positive or zero, the 
solution of the system with the standard boundary conditions (see Fig. 1) 
is equal to the constant initial input for (t < 0, z > 0) and to the solution 
of our experimental problem for (t > 0, z > 0). In practice it is useless to 
calculate the values of u; for i < 0 (t < 0, z > O), since they are constant. 

D. The Godunov Algorithm for Gas Chromatography 

From what has been said before, the iteration equation for the 
calculation of the solution at stage n is 

In gas chromatography, however, the local pressure depends on the 
abscissa, which we have neglected so far. To take it into account, we may 
merely write in the above equation thatp is equal topn, a function ofn6z 
derived from Eq. (8). The final form of the iteration loop is thus 

This set of equations, G, is the set of formulas used to write the basic 
loop of our program. 

IX. APPLICATION 

Using the algorithms just discussed, we have written a program which 
permits the derivation of a numerical solution of the system of partial 
differential equations describing the migration of the zone of a pure 
compound through a chromatographic column. The equilibrium iso- 
therm of the compound considered must be known and made available 
to the program under a suitable form to allow the calculation of the 
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1816 ROUCHON ET AL. 

amount of solute sorbed as a function of the concentration in the mobile 
phase. This program permits the prediction of the elution profile of the 
zone corresponding to any input function. 

In this paper we compare the predictions of the model with experi- 
mental results obtained for the injection of narrow, rectangular plugs of 
n-hexane on graphitized carbon black. 

In a previous paper we described the determination of the adsorption 
isotherm of n-hexane on graphitized carbon black at 100°C (5)  using the 
step and pulse method. The elution profiles of large sample size bands 
were recorded with the same equipment. 

From the isotherm obtained previously and using our program, we 
calculated the band profiles of these large samples of n-hexane with the 
following assumptions. The inlet carrier gas flow rate is kept constant 
during the experiment, and the solute concentration in the mobile phase 
entering the column is zero for t negative. At time t = 0 the input 
concentration becomes equal to xo and remains constant until t = to. 
Then it becomes zero again and remains so until the end of the 
calculation. 

Calculations have been made with two programs, one using the 
Godunov algorithm and the other one the antediffuse Lax-Wendroff/ 
Godunov algorithm. The latter did not give any significant improvement 
in the band profiles over the results obtained with the Godunov method, 
and because it is more complex and takes a much longer time to run, the 
antediffuse algorithm was abandonned and is not discussed in detail 
here. 

In all cases the numerical retention ratio 6t/6z was kept constant during 
the whole calculation. The CFL condition was always satisfied, except for 
one calculation. 

X. RESULTS AND DISCUSSIONS 

Figure 9 shows the profiles recorded following the injection of four 
samples of increasing sizes (5.6,87,245, and 360 pg, respectively, Fig. 9a) 
and the profiles resulting from the calculations performed on the same 
sample amounts (Fig. 9b). All the profiles have been plotted on the same 
scale. The concentration of n-hexane in the 800-pL (NTP) gas plugs 
injected was 0.18, 2.8, 8.0, and 11.7%, respectively. Details on the 
calibration of the detector which is required in these experiments are 
given elsewhere (5). Figure 10 (a to d) permits a more precise comparison 
between the experimental and the predicted profiles obtained in each 
case. In Figs. 1 l(a) and 1 l(b) the calculated flow rate and concentration 
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L 

0 100.0 120.0 140.0 160.0 100.0 120.0 140.0 160.0 

Time (sec) Time (sec) 

FIG. 9. Comparison between experimental and calculated band profiles. Ordinate: n-hexane 
partial pressure in the eluent, arbitrary unit. (a): Experimental results. Column: 50 cm long, 
2.1 mm i.d., packed with 1.5 I g Carbopack C,HT (Supelco). Temperature: 100°C. Carrier gas 
flow velocity: 17.7 cm/s. Inlet to outlet pressure ratio: 1.60. Sample: 500 pL of a nitrogenh- 
hexane vapor mixture. Sample size: I ,  5.6 pg; 2, 87 pg; 3. 245 pg; 4, 360 pg. Samples are 
injected as vapor diluted in nitrogen. (b): Calculated profiles, corresponding to the same 

sample sizes as the experimental profiles in Fig. 9(a). 

profiles are shown for the first (5.6 pg) and the third (245 pg) samples, 
respectively. Figures 12(a) and 12(b) illustate the progressive change in 
profile during the migration of the 245-1.18 band inside the column. Since 
each profile in these two figures is an instantaneous photograph of the 
band profile inside the column, the profile asymmetry is opposite to the 
one observed in Figs. 9 and 10, which represent elution profiles, at 
column exit. The part of the profile the closest to the column exit is the 
first one to get out. Figure 13 shows the influence of the pressure gradient 
in gas chromatography. Finally, Fig. 14 shows what may happen when 
the Courant-Friedrichs-Lewy condition is not satisfied. 

The first observation is that the model accounts very well for the 
experimental phenomena. The predicted and observed band profiles are 
very close (see Figs. 9 and 10); the retention times (corresponding to the 
elution of the concentration maxima), the appearance of a sharp bend on 
the tail part of the profiles at high concentrations, the existence and the 
time of appearance of the abrupt concentration variations are well 
accounted for. 

The second observation is that agreement between predicted and 
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I I I I I 

0 100 120 140 100 120 140 

Time (sec) 

Time (sec) 

FIG. 10. Comparison between experimental and calculated band profiles. The dotted lines 
are experimental profiles; the dots represent data points as acquired by the computer. The 
solid lines represent the calculated profiles. (a): Sample size: 5.6 pg. (b): Sample size: 87 pg. 

(c): Sample size: 245 pg. (d): Sample size: 360 pg. 
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I I , I I I I 

100.0 120.0 140.0 160.0 100.0 120.0 140.0 160.0 

Time (sec) Time (sec) 

FIG. 11 .  Variation of the carrier gas velocity during the elution of a large concentration 
band. Calculated flow velocity profiles and concentration profiles (arbitrary units). Sample 
sizes: (a) 5.6 pg n-hexane vapor; (b) 245 pg n-hexane vapor. The initial flow velocity is 17.699 
cm/s. The maximum velocity is 17.70 cm/s in the first case and 17.76 cm/s in the second 
case. These variations (0.33 and 0.35%, respectively) are too small to be detectable in 

practice. 

experimental results improves with increasing concentration (see Figs. 
IOa to d), which is to be expected from a model which neglects the 
second-order effects (mass transfer kinetics) and puts the emphasis on 
the first-order effects (thermodynamics, i.e., nonlinear behavior of the 
equilibrium isotherm and sorption effect). Significantly, the major 
difference between the predicted and the observed profiles lies in the fact 
that calculated profiles are steeper than experimental ones, i.e., corre- 
spond to a larger column efficiency. The peak recorded for a very small 
sample size is significantly broader (1.8 times) than the peak calculated, 
which corresponds to a 3.3 times less efficient column. The origin of the 
sharpness of the simulated profiles is found in our original assumption 
that the contribution of resistance to mass transfer to band broadening is 
negligible. There is some smoothness, however, in these profiles which do 
not show the sharp concentration discontinuities predicted by ideal, 
nonlinear chromatography. The reason is to be found in the “numerical 
diffusion,” the errors made in the millions of individual calculations 
which result in a band profile. By adjusting the space increment, 6z, 
properly (St is selected to satisfy the CFL condition), it might be possible 
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0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 

i 

z (cm) 

FIG. 12(a). Progressive change of the band profile during its elution through the column. 
Calculated profiles at different times represent the concentration distribution of the solute 
along the column. Sample size: 245 pg. The profile asymmetry of a space profile is the 
reverse of the asymmetry of a time profile (i.e., an elution chromatogram as in Figs. 9 and 
lo), since the farther down the column a molecule is at a given time, the sooner afterwards it 
exists. Time between 1 and 30 s after injection of the sample. The number on each curve is 

the time in seconds. 

(b) 

FIG. 12(b). As in Fig. ll(a), but time between 10 and 100 s after injection of the sample. 
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I I I I I I & 

100.0 120.0 140.0 160.0 100.0 120.0 140.0 160.0 

Time (sec) Time (sec) 

FIG. 13. Influence of the pressure profile of the carrier gas along the column on the elution 
profile of a finite concentration band in gas chromatography. (a): Profile calculated with the 
assumption of a constant pressure equal to the average column pressure (Pdj, wherej is the 
James and Martin pressure correction factor). (b): Profile calculated with the assumption of 
a classical pressure profile given by Eq. (8) and unperturbed by the migration of the large 

concentration band. 

to fine tune the “numerical diffusion” and use it to replace the apparent 
diffusion, better known in chromatography by its avatar, the column 
HETP (37). 

The final observation is the occurrence of a hump on the front side of 
the peaks, especially important on the second profile but noticeable also 
on the two largest ones. This hump is an artefact which originates in the 
method we used for the derivation of the isotherm representation (5). We 
have not used one of the conventional equations for this isotherm, 
because they give the concentration in the mobile phase or the vapor 
pressure at equilibrium as a function of the amount sorbed and they 
cannot be solved analytically for the amount sorbed, which is necessary 
for the program. We have preferred to interpolate the data by fitting them 
on a cubic spline (i.e., a French curve). Although this function is known 
to give excellent results within the range of the measurements carried out, 
the spline introduces spurious oscillations outside this range, in its 
immediate vicinity (cf. Ref. 5, Fig. 2), making the extrapolation of this 
function ill-advised. To avoid the consequences of these oscillations, we 
have assumed the isotherm to be linear at very small concentrations, 
replacing the spline by a tangent in the range of partial pressures below 
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50 100 150 

Time (sec) 

,010 
0 

FIG. 14. Example of a concentration profile obtained with an incorrect value of the ratio dzl 
dr, not satisfying the Courant-Friedrichs-Lewy condition. 

the smallest one experimentally accessible with accuracy. This creates a 
discontinuity in the second derivative of the isotherm. The result is the 
hump, which occurs at the same concentration as this discontinuity. 

Also noteworthy is the way the tail parts of the experimental profiles 
corresponding to the three large sample sizes (overloaded column) are 
barely distinguishable from each other (see Fig. 9a). This fact demon- 
strates the validity of the concept of an association between a concentra- 
tion and a velocity (i.e., the retention ratio of the corresponding 
characteristic line). It also verities that the correct relationship has been 
established between the peak profile and the shape of the isotherm: the 
sharp bend in the tail part of the last two experimental profiles, 
corresponding to the two largest samples, corresponds to the inflection 
point of the isotherm, takes place at the same solute concentration, and 
disappears when the band maximum falls below that concentration. All 
these features of the experimental profiles (see Fig. 9a) can be found on 
the calculated profiles 2 to 4 (Fig. 9b), as well as on the different profiles 
of the band inside the column (Figs. 12a and 12b); they are merely 
enhanced by the larger efficiency. 

Figures 12(a) and 12(b) also illustrate the very rapid decrease, a near 
collapse, of the band maximum at the beginning of its migration, 
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associated with a rapid increase in the band width. This explains why the 
massive column overloading, which almost always takes place at 
injection, generally results in a modest band asymmetry: the nonlinear 
region of the isotherm is sampled by the band for only a very short part of 
its migration along the column. It will be noted again in these figures how 
the sharp bend in the tail of the profiles forms early (it is obvious in Fig. 
l l a  at the 2nd second) and remains stable. It is the diffusion-smoothed 
discontinuity corresponding to the inflection point of the isotherm. This 
in turn corresponds to a maximum in k’(C) at the largest retention ratio 
that a concentration may experience in the column (8). 

Figures 1 l(a) and 1 l(b) show the flow velocity profiles in two cases, a 
quasi-analytical sample (5.6 pg) and a large one (245 pg). The variation of 
the flow velocity during the elution of a band, even a large one (Fig. 1 lb), 
is relatively small: for a concentration step at the column inlet of 8% 
during 1.2 s (injection of a 800-yL (NTP) gas sample in a 2.1-mm i.d. 
column, with a flow rate of 36 mL/min), the maximum velocity change is 
0.35%, which is probably too small to be measured, even with a precise 
flow meter. 

Finally, comparison between Figs. 13(a) and 13(b) shows that in gas 
chromatography it is important to take the pressure gradient into 
account. The band profile calculated on the assumption that the pressure 
is constant and equal to the column average pressure results in a 
predicted band profile which is markedly farther from the experimental 
one than the profile calculated using Eq. (8) to account for the pressure 
variation along the column, and this in spite of the fact that both 
programs take the sorption effect into account in exactly the same way. 

Figure 14 illustrates the importance of satisfying the CFL condition in 
order to achieve acceptable results when operating the program. The 
profile in this figure bears no resemblance to any chromatographic 
profile. It does not even have a physical sense, since it incorporates 
sections where the solute concentration is negative. 

XI. CONCLUSION 

The numerical solution of the nonlinear, hyperbolic system of partial 
differential equations which describes the migration of a large concen- 
tration band along a chromatographic column has been proven to give 
satisfactory results in spite of the necessity of neglecting the diffusion 
term in order to obtain an equation system which can be programmed. 
The band profiles calculated are in good agreement with those deter- 
mined experimentally, except for the fact that the sides of the profiles 
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predicted are quite a bit steeper than the sides of the profiles recorded 
experimentally, at least in our case. This is due to the assumption of a 
very large column efficiency (the model assumes an infinite efficiency, 
but the program requires several millions calculations, resulting in 
numerical smoothing). In the present program there is no way to account 
for a variation in the column efficiency. 

The use of the program written to apply this method of numerical 
solution permits a detailed study of the various parameters involved in 
the control of a band profile: 

The nature of the isotherm. It is especially easy to change it since the 
amount sorbed in the stationary phase (ie., either dissolved or 
adsorbed) is calculated using a subroutine of the main program. Any 
isotherm given as an analytical expression, such as a Langmuir 
isotherm, is easy to include. Difficulties may arise in the use of 
experimental adsorption data, depending on the method used to fit  
these data, but there are many numerical solutions to these problems. 

The injection profile. Plug injection of large samples is a physical 
impossibility. A rectangular injection profile would be ideal, but this 
can never be achieved in practice. Discretization of a complex 
injection profile is not difficult to achieve, however. These data are 
injected in the calculation through another subroutine which makes 
them easy to change. 

The column parameters, describing its design (length, phase ratio) or 
its operation (flow velocity, inlet pressure in GC). They are easy to 
modify because they are entered as data in the program. The present 
program does not permit any adjustment of column efficiency, which is 
its most significant drawback. 

Work is in progress to exploit the potentialities of this powerful tool to 
study the performance of heavily loaded chromatographic columns in 
more detail (37). 

APPENDIX 

Singularities in the Solution of the System 

The nonlinear hyperbolic system of partial differential equations that 
describes the behavior of a large concentration band in a chromato- 
graphic column can propagate discontinuities, as in many other similar 
systems (38). For example, the system describing the propagation of 
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sounds in air can propagate shock waves. In the case of chromatography, 
the origin and properties of these discontinuities have been recognized by 
De Vault (39) and discussed by Jacob et al. (40) and by Rhee and 
Amundson (41). They are related to the fact that a velocity can be 
associated with a concentration. If the “velocity of the concentration” 
increases with increasing solute concentration in the mobile phase, as is 
the case with a Langmuir-type isotherm, the large concentrations (i.e., the 
top of the peak profile) tend to pass the small concentrations (i.e., the 
peak base). De Vault recognized that this is an impossible situation (39): 
it is not possible to have three different values of the concentration at the 
same point of the column. Instead, a stable vertical front appears and 
grows. This is a concentration discontinuity. The theory of characteristics 
explains the appearance, growth, decay, and collapse of these discon- 
tinuities (40). It is much more difficult, however, to account for their 
behavior quantitatively during the numerical solution of the problem 
(42). We now present a few explanations on the mathematical back- 
ground of the problem. 

We shall discuss only the simplest case of a single nonlinear, 
hyperbolic partial differential equation: 

1 u(0,t )  = u*(t), t E R , z  > 0 

where the matrice DJIreduces to the scalar number f ’ (u) ,  so the problem 
is always strictly hyperbolic. 

There is an important family of curves in the half-plane (z,t, z > 0) 
which is defined by 

d t / d z  = f ’ [ u ( t ( z ) , z ) ]  

t ( 0 )  = to 

These curves are called characteristic lines or characteristics of the 
problem. It is easy to show that along these lines the following 
relationship applies: 

d d u  d u  
- [u(r(z) ,z) ]  = - + f ’ ( u )  - = 0 
dz dz  dt 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
0
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1826 ROUCHON ET AL. 

and thus 

and 

The curves we are considering, defined by Eqs. (2a), are straight lines. It 
is often (and rather loosely) said that the initial condition propagates 
along the characteristics (40). The solution can be derived numerically in 
a very straightforward and easy way as long as the characteristic lines 
issued from two different points of the boundary profile (“injection 
profile”) do not intersect, and for all values of time before such an 
intersection takes place. As soon as two characteristic lines intersect, a 
regular solution to the system cannot exist any longer. For example, the 
Burgers equation belongs to the family defined by Eq. (la) with 

f ( u )  = u2/2 (6a) 

For this equation the characteristic line from the point (t,,O) is given 
by 

With uo(t) = t as a boundary condition, the characteristics are repre- 
sented in Fig. 15 and the classical solution is 

t 
1 + z  u( t , z )  = ~ 

Z 

0 1 2  
FIG. 15. Characteristic lines of the Burgers equation. 
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With uo(t) = -t2, on the other hand, the characteristics from the points 
(-t,,O) and (to,O), respectively, intersect on the y axis (t = 0) and there 
exists no positive value of z, z,, such that a classical solution is defined for 
values of z smaller than 2,. 

Weak Solutions of a System of Partial Differential Equations 

It becomes necessary to extend the concept of solution of a system of 
partial differential equations and accept discontinuous solutions. This is 
done by looking for solutions in the framework of the distribution theory. 
A function u will be a weak solution of the system of partial differential 
equations if 

l,'"/-r [w + H(w) wO@(0,t)dt = 0 (9a) dt 

for any vectorial function Q, of Class C. 
Whenever u can be differentiated, we find the original system of 

equations by part integration of Eq. (9a). On the other hand, let us 
assume that u is a solution of Eq. (9a) and of Class C1 except on Curve C 
of equation t = s(z). For an open o of the plane (z,t) containing an  arc of 
C, we define o+ and w- as shown in Fig. 16 and C- and C+ as the part of 
the border of o- and o+ which are inside o. Let w- and w+ be the limits of 
w along the curve, on each respective side. If + is supported in o, we 
have 

L+/-+[w & + H(w) dt 

If we integrate by parts in o- and a+, respectively, since w is regular in 
these two areas, and if we call v+ = (vz+,vt+) the external normal to w+ (see 
Fig. 16), we obtain: 

/In -[% + dtH(w) d (w-v; + H(w-)v;)+dv 

Since this relationship must be valid for any function +with support in 
o, we must have 
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FIG. 16. Definition of the “weak solutions” of a nonlinear, hyperbolic 
equation. 

dw d 
- + -H(w) = 0 dz dt 

in o- and in o+ and 

partial differential 

(w+ - w-)v:  + ( H ( W + )  - H(w-))v:  = 0 (13a) 

As the Curve C has been defined by t = s(z), Eq. (13a) becomes 

H(w+) - H(w-) = S’(Z)(W+ - w-) ( 14a) 

and s’(z) is the retention ratio of the discontinuity (or shock, by analogy to 
aerodynamics). Equation (14a) is called the Rankine Hugoniot relation- 
ship. It is a necessary and sufficient condition for a function satisfying 
Eq. (la), except on a discontinuity line such as C, to be a weak solution of 
the system. It is interesting to observe that this relationship appears as a 
natural consequence of the definition of the weak solution (Eq. 9a), while 
its addition to the system of partial differential equations of chroma- 
tography was quite arbitrary (40). 

New difficulties arise, however, because now a nonlinear hyperbolic 
partial differential equation may have an infinity of weak solutions, 
which is not satisfactory. For example, the Burgers equation (Eq. 6a), with 
an initial condition equal to 0 ( ~ ( 0 4 )  = 0), has an obvious classical 
solution, the null function, u(z4) = 0. The following solution, however, is 
defined for any to and for a > 0: 
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a 
--oo < t < 60 - - z ,  u(z, t )  = 0 

2 

a to - - z  < t < to, u(z , t )  = --c( 
2 

a t" < t < t" + - z ,  u(z,r) = a 
2 

a 
I" + - z  < t < +a, u(z,t) = 0 

2 

is an acceptable weak solution. Since it is a classical solution everywhere, 
it is continuous, while the Rankine Hugoniot relationship is verified 
along the discontinuities. 

The concept of mathematical entropy is introduced to solve this 
difficulty (44). 

Mathematical Entropy 

We introduce a constraint to limit the number of possible solutions of 
the system. A function @ is called the mathematical entropy of the system 
of partial differential equations if there exists a function w such that 

w' = @'DHH ( 14a) 

\cr is called the entropy flux. In fact, due to the exchange between time 
and space which occurs in the chromatographic system of equations, 
compared to the classical hyperbolic system, w is the time gradient of 
entropy accumulation. 

If a regular solution of the system does exist, then by multiplying it on 
the left side of @'(w), we obtain: 

This is not true, however, if w is not regular. We can then select the 
entropic solution of the system by requiring that 

for any convex entropy of the system (44). 
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Another definition of the entropic solution is to consider that it is the 
limit of the solution of systems which include a vanishingly small 
diffusion term, i.e., it is the limit of the solution of 

dw d d2w 
dz dt dt 
__ + - [ H ( w ) ]  = & 7 

when E tends toward 0. Equation (19a) has a single, regular solution. The 
diffusion term has a smoothing, regularizing effect. Furthermore, if @ is a 
convex entropy of the system, we have, for any positive value of E, 

The limit solution, if it exists, should satisfy Condition (18a). The 
definition and the procedure make sense since the diffusion term does 
exist in the original model of chromatography, where it accounts for the 
resistance to mass transfer and the axial molecular diffusion, but it has 
been dropped for the sake of simplification and because it is small 
compared to the other terms. 

A detailed study of the diffusional term has been published by Rhee et 
al. as part of their investigation of the solution of the Riemann problem 
(41). Finally, another method for the selection of the proper solution, due 
to Lax (45), consists in the interdiction of certain types of discontinuity. 
This was the first method used. It is rather practical and it is the one 
selected for this work. 

The Lax Condition 

A shock is “acceptable” if there are no characteristics exiting from it. 
More precisely, a discontinuity is called a k-shock if the characteristic 
lines of the kth family enter in the discontinuity while the characteristic 
lines of the other families do not encounter it. Here are the consequences. 

Let w be a weak solution of the equation system, continuous every- 
where except along a shock curve C (t = s(z)). It is a k-shock curve if the 
following two relationships are verified along the curve: 

and 
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Once the eigenvalues of the system are arranged in increasing order, 
hk(w(z,t)) is the retention ratio of the kth characteristics going through the 
point (z,t), and s’(z) is the retention ratio of the shock at the point 
(zdz)) .  

There are other ways to select the acceptable shocks (46, 4 3 ,  but the 
general theory is still quite incomplete. It is possible to demonstrate that 
these different conditions are equivalent only in particular cases. The 
following results summarize the present state of development of the 
theory of nonlinear hyperbolic partial differential equations applicable 
to the chromatographic model. 

In the case of a single equation, all the entropic criteria have been 
shown to be equivalent. An entropic solution does exist and is unique for 
all finite boundary condition, u,, (48,49). This case is of no importance to 
us, however. It describes the propagation of the front of a pure gas or 
vapor which is suddenly introduced into an empty column where it is 
sorbed. There should be no carrier, so this model cannot describe any 
chromatographic problem. 

In the case of a two-equation problem, Di Perna has shown the 
existence of a solution for some specific systems and for a finite bound- 
ary condition (50). A system of two partial differential equations 
describes the behavior of a single solute in chromatography. It permits 
the prediction of the band profiles in nonlinear chromatography (largely 
overloaded columns) and in frontal analysis or of the migration rate of 
system peaks, but always for a pure compound and a pure mobile 
phase. 

In the case of three-equation or larger systems there is a demonstration 
of the existence of an entropic solution, after Lax, for a finite and nearly 
constant boundary condition. It is based on a discretization of the 
condition and a study of the interactions between discontinuities (51). 
Three-equation systems permit the study of the separation between two 
compounds in chromatography, provided the ternary sorption isotherm 
is known, the study of frontal analysis with a mixed mobile phase and the 
study of other chromatographic problems of similar complexity. It seems 
that they are the most important in practice. Although chromatography is 
often used to separate more complex mixtures, the prediction of the band 
profiles during the separation of a binary mixture would permit detailed 
studies on the optimization of the experimental conditions for maximum 
yield, maximum production, or minimum cost which would lead to 
general conclusions valid to the case of the separation of more complex 
mixtures. 

In spite of the difficulty of the problem and the uncertain nature of the 
theoretical ground where we have to venture, it seems that such a result is 
not beyond our reach. 
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